Personal tools
Home » Working Groups » Science Frameworks for EBM » Working Group Meeting Minutes, Materials & Presentations » September 13-17, 2006 Meeting » Reprints exchanged during meeting » Draft socioeconomic overview of Northern and Central California counties' marine activities 2003
Document Actions

Draft socioeconomic overview of Northern and Central California counties' marine activities 2003

Prepared for Monterey Bay, Gulf of the Farallones and Cordell Bank National Marine Sanctuaries' Joint Management Plan Revision. Authors: Rod Ehler, Vernon R. Leeworthy, and Peter C. Wiley
      Joint Management Plan Revision (JMPR)


       Monterey Bay National Marine Sanctuary (MBNMS)
     Gulf of the Farallones National Marine Sanctuary (GFNMS)
       Cordell Bank National Marine Sanctuary (CBNMS)




         A Socioeconomic Overview
of the Northern and Central Coastal California Counties as They
    Relate to Marine Related Industries and Activities




               DRAFT April 2003


                   By


        Rod Ehler, National Marine Sanctuary Program
       Dr. Vernon R. (Bob) Leeworthy, Special Project Office
          Peter C. Wiley, Special Projects Office




            U.S. Department of Commerce
       National Oceanic and Atmospheric Administration
              National Ocean Service

         National Marine Sanctuary Program (NMSP)
                   and
            Special Projects Office (SPO)

              Silver Spring, Maryland
                Table of Contents


INTRODUCTION
 Purpose
 Background
 Future Projects

DEMOGRAPHIC AND ECONOMIC PROFILE
 Population
   Population Density
   Historical and Projected Population
   Population Growth
   Race
   Age and Gender
 Labor Force
 Income and Employment
   Income by Place of Residence
   Income by Place of Work
   Proprietors Income and Employment
 Indicators of Economic Health and Wealth
   Unemployment Rates
   Per Capita Income
   Income and Employment by Industry
 Income and Employment: Additional Disaggregation
   Commercial Fishing
   Tourism and Recreation

VALUE OF MARINE RESEARCH

TOURISM AND RECREATION
 California Travel Impacts by County
 Marine Related Recreation
  National Survey on Recreation and the Environment (NSRE)
  Marine Recreational Fishing
    Participation and Expenditures
    Socio-economics
  Pleasure Boating
  Personal Watercraft
  Kayaking
  Whale and Other Wildlife Watching
  Surfing
  Beach Visitation
  Scuba Diving

COMMERCIAL FISHING (CDFG)
INTRODUCTION

Purpose

The purpose of this document is to present the necessary background information on the local
social and economic (socio-economic) environment for which changes in management actions in
the JMPR study area can be analyzed in a socioeconomic impact analysis. The information
presented here is what we have found to date to be the “best available information”. In addition
to the socioeconomic characterization, we will provide some discussion on gaps in the data.

We will examine all direct uses potentially impacted; examples are 1) tourist/recreational use
(e.g., whale watching, kayaking, scuba diving) and 2) commercial industries (e.g., commercial
fishing, kelp harvesting). With respect to the local economies, these uses will have ripple or
multiplier effects as measured by market economic values (e.g., output/sales, income,
employment and tax revenues). In this report, we review available information to assess how
important these industries are to the local economies. We will also present what is known about
social and economic parameters that can be used in socioeconomic impact analyses.

Background

The MBNMS, GFNMS, and CBNMS are currently involved in a joint management plan revision
(JMPR), a process that is required by law to take place approximately every five years. The
management plans for the three northern and central California sanctuaries are between 9 and 20
years old. The National Marine Sanctuary Program (NMSP) is reviewing all three management
plans jointly. These sanctuaries are located adjacent to one another, managed by the same
program, and share many of the same resources and issues. In addition, all three sites share many
overlapping interest and user groups. It is also more cost-effective for the program to review the
three sites jointly rather than conducting three independent reviews. During the review, the
sanctuaries will evaluate management and operational strategies, regulations, and boundaries.
The review will look at whether the management programs at all three sanctuaries can be better
coordinated.

A sanctuary management plan is a site-specific planning and management document that
describes the objectives, policies, and activities for a sanctuary. Management plans generally
outline regulatory goals, describe boundaries, identify staffing and budget needs, set priorities
and performance measures for resource protection, research, and education programs. They also
guide the development of future management activities.

Any data gap identified as necessary to support the socioeconomic impact analysis will be
collected and compiled in a manner so as to capture both the temporal and spatial variation in
activities. The information will be linked with economic parameters from existing studies to
develop estimates of economic impacts as measured by changes in both market economic values
(e.g., sales/output, income and employment) and non-market economic values (e.g., consumer’s
surplus and economic rents). Socioeconomic profiles of those potentially impacted will be
compared against all users from a given user group and against the general population of the
local area (e.g., the coastal California counties).

To accomplish the above requires a review of the existing literature and databases available and
compiling this information in a manner that it can be used in the socioeconomic impact analyses.
In some cases, available information will not support certain aspects of the proposed analyses. In



                        2
addition, supplemental data collection and analysis may not be feasible with time and resources
available. What we are left with is what is commonly referred to as the “best available
information”.

Future Projects

There are currently 3 projects planned in support of the JMPR.

In early 2003, the National Marine Sanctuary Program and California Sea Grant will hold a
workshop to identify needed socio-economic studies associated with marine activities in the Joint
Management Plan Revision study area.

In October 2002, Dr. Caroline Pomeroy and Dr. Michael Dalton were awarded, through
California SeaGrant, $70k to conduct a study titled “Market Channels and Value Added to Fish
Landed at Monterey Bay Area Ports”.

In 2003, another study will be initiated that will investigate private household boat users. One of
the major gaps in information for all California Sanctuaries is the number of private household
boat users and amount of use, especially for non-consumptive users.




                         3
DEMOGRAPHIC AND ECONOMIC PROFILE

Population.

Population density and historical population estimates presented here are from the U.S.
Department of Commerce, Census Bureau (http://www.census.gov), while population
projections are from the University of California.

Population Density. The map below presents population density per square mile. Population is most
dense in the area reaching from San Francisco, down the eastern portion of San Mateo County to the San
Jose metropolitan area and continuing north through the western portion of Alameda County to the Oakland
metropolitan area. Pockets of dense coastal population also exist in the Santa Cruz and Monterey Peninsula
areas. Within the JMPR study area there are several inland areas of dense population, such as Salinas,
Vallejo, Concord, Walnut Creek, Napa, Santa Rosa, and Fairfield.


Figure 1. Population Density Per Square Mile




   P o p u la t io n D e n s i t y
       0 - 4 9 8. 81
       4 9 8 .8 1 - 1 5 2 9 .5 2
       1 5 2 9 .5 2 - 2 6 8 1 .5 2
       2 6 8 1 .5 2 - 3 8 4 2 .7 1
       3 8 4 2 .7 1 - 4 9 8 2 .2 6
       4 9 8 2 .2 6 - 6 0 9 6 .6 4
       6 0 9 6 .6 4 - 7 1 8 1 .5 4
       7 1 8 1 .5 4 - 8 2 7 2 .6 5
       8 2 7 2 .6 5 - 9 4 0 1 .0 5
       9 4 0 1 .0 5 - 9 9 9 9 .9 9




                          4
Historical and Projected Population. The two largest counties in the study, in terms of
population, are Santa Clara (1.7 million) and Alameda (1.4 million). Combined, these two
counties account for almost 40 percent of the JMPR study area population. Santa Clara and
Alameda Counties saw growth very much in line with the overall JMPR study area rate of 12.5
percent over the period 1990 to 2000. The smallest county in terms of population, San Benito (53
thousand), has shown the highest rate of growth, 45 percent, over the period 1990 to 2000 and 113
percent over the period 1980 to 2000. All counties are expected to continue their growth, with the
exception of San Francisco, which is forecast to decline in population over the next few decades.
See Table 1a and 1b.

Table 1a. Population, Historical and Projected, for Coastal California

                  U.S. Census Bureau Actual                            University of California Forecast
          1960     1970     1980      1990        2000      2000        2010        2020      2030        2040
CALIFORN IA    15,717,204  19,953,134  23,667,902   29,760,021     33,871,648   34,653,395     39,957,616   45,448,627    51,868,655     58,731,006
JMPR STUDY AREA   4,237,970  5,441,401   6,204,241    7,312,783    8,226,651    8,410,361      9,480,827   10,382,363    11,409,517     12,437,966
MEN DOCINO       51,059    51,101    66,738      80,345      86,265     90,442       105,225     118,804     133,440      149,731
SONOMA        147,375   204,885    299,681     388,222      458,614     459,258       544,513      614,173      684,311     753,729
MARIN         146,820   206,038    222,568     230,096      247,289     248,397       258,569      268,630      282,864     297,307
N APA         65,890    79,140    99,199     110,765      124,279     127,084       143,542      157,878      174,240     191,971
SOLANO        134,597   169,941    235,203     340,421      394,542     399,841       479,136      552,105      625,619     698,430
CON TRA COSTA     409,030   558,389    656,380     803,732      948,816     931,946      1,025,857     1,104,725   1,189,501     1,264,400
ALAMEDA        908,209  1,073,184   1,105,379    1,279,182    1,443,741    1,470,155      1,654,485     1,793,139   1,938,547     2,069,530
SAN FRANCISCO     740,316   715,674    678,974     723,959      776,733     792,049       782,469      750,904      724,863     681,924
SAN MATEO       444,387   556,234    587,329     649,623      707,161     747,061       815,532      855,506      907,423     953,089
SAN TA CRUZ      84,219   123,790    188,141     229,734      255,602     260,248       309,206      367,196      430,078     497,319
SAN TA CLARA     642,315  1,064,714   1,295,071    1,497,577    1,682,585    1,763,252      2,021,417     2,196,750   2,400,564     2,595,253
MON TEREY       198,351   250,071    290,444     355,660      401,762     401,886       479,638      575,102      700,064     855,213
SAN BENITO       15,396    18,226    25,005     36,697      53,234     51,853       68,040      82,276      97,941     114,922
SAN LUIS OBISPO    81,044   105,690    155,435     217,162      246,681     254,818       324,741      392,329      461,839     535,901
SAN TA BARBARA    168,962   264,324    298,694     369,608      399,347     412,071       468,457      552,846      658,223     779,247



Table 1b. Population Growth (% Change), Historical and Projected, for Coastal California

                       U.S. Census Bureau Actual                        University of California Forecast
                1960 - 1970  1970 - 1980    1980 - 1990    1990 - 2000    2000 - 2010     2010 - 2020    2020 - 2030      2030 - 2040
                  27.0       18.6      25.7        13.8        15.3        13.7        14.1        13.2
CALIFORN IA
JMPR STUD Y AREA          28.4       14.0      17.9        12.5        12.7        9.5        9.9         9.0
MEN DOCIN O             0.1       30.6      20.4        7.4         16.3        12.9        12.3        12.2
SON OMA               39.0       46.3      29.5        18.1        18.6        12.8        11.4        10.1
MARIN                40.3       8.0       3.4        7.5         4.1         3.9        5.3         5.1
N APA                20.1       25.3      11.7        12.2        13.0        10.0        10.4        10.2
SOLAN O               26.3       38.4      44.7        15.9        19.8        15.2        13.3        11.6
CON TRA COSTA            36.5       17.5      22.4        18.1        10.1        7.7        7.7         6.3
ALAMEDA               18.2       3.0       15.7        12.9        12.5        8.4        8.1         6.8
SAN FRAN CISCO           -3.3       -5.1       6.6        7.3         -1.2        -4.0        -3.5        -5.9
SAN MATEO              25.2       5.6       10.6        8.9         9.2         4.9        6.1         5.0
SAN TA CRUZ             47.0       52.0      22.1        11.3        18.8        18.8        17.1        15.6
SAN TA CLARA            65.8       21.6      15.6        12.4        14.6        8.7        9.3         8.1
MON TEREY              26.1       16.1      22.5        13.0        19.3        19.9        21.7        22.2
SAN BEN ITO             18.4       37.2      46.8        45.1        31.2        20.9        19.0        17.3
SAN LUIS OBISPO           30.4       47.1      39.7        13.6        27.4        20.8        17.7        16.0
SAN TA BARBARA           56.4       13.0      23.7        8.0         13.7        18.0        19.1        18.4


Sources: Population; U.S. Department of Commerce, Census Bureau (http://www.census.gov).
Population Projections; University of California




                                      5
Race. The demographic composition of the study area varies greatly. The four counties
(Mendocino, Sonoma, Marin, and Napa) that make up the northern section of the study are
predominately White (all at or above 80 percent) with less than average proportion of Blacks,
Asians, Hispanics and Latinos. It is important to point out that Mendocino County’s population
is almost 5 percent American Indian. The Bay Area counties of Solano, Contra Costa, Alameda,
San Francisco, San Mateo, and Santa Clara are the most diverse counties in the study area. The
White population of this area drops to 50 to 65 percent and the Black and Asian populations
increase dramatically to 10 to 30 percent. About one third of San Francisco’s population is Asian.
The remaining counties that comprise the Southern section of the study area are heavily
populated with Hispanics and Latinos, particularly in Monterey and San Benito Counties where
the Hispanic and Latino population stands at almost 50 percent.

Age and Gender. In terms of age, similar geographic variations do emerge. The Northern four
counties identified above are also the oldest, in terms of median age (34 to 41 years). The
proportion of people 45 and older is also greatest in these counties. With a few exceptions, the
remaining counties in the study area are quite similar in terms of age. San Francisco has the
highest proportion, 41 percent, of people 25 to 44 years and the lowest proportion, 15 percent, of
people under 18 years. The counties with the highest proportions at retirement age, 65 years and
older, are Napa and San Luis Obispo.

There are also variations in gender among the county populations. Three of the counties,
Monterey, San Luis Obispo, and San Francisco, have higher populations of males. Sonoma,
Contra Costa, Alameda, and San Mateo are more populated by females.

Table 2a. Demographic Profiles Coastal California Counties – Race, 2000

                                      One race

                                                                   Hispanic or
                                                Native
                                                            Two or more
                                    American
              Total Pop.                                                 Latino (of
                              Black or             Haw aiian          races
                                    Indian and             Some other
                                                                   any race)
                     One Race  White  African         Asian  and Other
                                     Alaska               race
                              American              Pacific
                                     Native
                                                Islander

California         33,871,648   95.3   59.5   6.7      1.0   10.9    0.3     16.8     4.7     32.4

JMPR Stu d y Srea      8,226,651   95.2   60.3   6.6      0.8   16.4    0.5     10.6     4.8     21.7

                86,265   96.1   80.8   0.6      4.8    1.2    0.1     8.6      3.9     16.5
Mend ocino Cou nty

                458,614   95.9   81.6   1.4      1.2    3.1    0.2     8.4      4.1     17.3
Sonoma Cou nty

                247,289   96.5   84.0   2.9      0.4    4.5    0.2     4.5      3.5     11.1
Marin Coun ty

                124,279   96.3   80.0   1.3      0.8    3.0    0.2     10.9     3.7     23.7
N ap a Cou nty
                394,542   93.6   56.4   14.9      0.8   12.7    0.8     8.0      6.4     17.6
Solan o Cou nty
                948,816   94.9   65.5   9.4      0.6   11.0    0.4     8.1      5.1     17.7
Contra Costa County
               1,443,741   94.4   48.8   14.9      0.6   20.4    0.6     8.9      5.6     19.0
Alam ed a Cou nty
                776,733   95.7   49.7   7.8      0.4   30.8    0.5     6.5      4.3     14.1
San Francisco County

                707,161   95.0   59.5   3.5      0.4   20.0    1.3     10.2     5.0     21.9
San Mateo Cou nty

                255,602   95.6   75.1   1.0      1.0    3.4    0.1     15.0     4.4     26.8
Santa Cru z Cou nty

               1,682,585   95.3   53.8   2.8      0.7   25.6    0.3     12.1     4.7     24.0
Santa Clara Cou nty
                401,762   95.0   55.9   3.7      1.0    6.0    0.4     27.8     5.0     46.8
Monterey Cou nty
                53,234   94.9   65.2   1.1      1.2    2.4    0.2     24.9     5.1     47.9
San Ben ito County
                246,681   96.6   84.6   2.0      0.9    2.7    0.1     6.2      3.4     16.3
San Lu is Obisp o County
                399,347   95.7   72.7   2.3      1.2    4.1    0.2     15.2     4.3     34.2
Santa Barbara County




                                    6
Sources: U.S. Department of Commerce, Census Bureau (http://www.census.gov).
Table 2b. Demographic Profiles Coastal California Counties – Age and Gender, 2000


                        Percent of total population            Males per
                                           Median   100 females
              Total
Geographic area                                    age
             Population  Under  18 to   25 to   45 to  65        All    18
                    18   24     44     64   years  (years)  ages   years
                    years  years   years   years  and             and
                                       over             over

             33,871,648  27.3  9.9    31.6    20.5  10.6   33.3   99.3   97.1
California


COUN TY
               86,265  25.5  8.1    25.6    27.1  13.6   38.9   98.9   97.1
Mend ocino County
               458,614  24.5  8.8    29.2    24.9  12.6   37.5    97    94
Sonoma County
               247,289  20.3  5.5     31    29.7  13.5   41.3   98.2   96.4
Marin County
N apa County         124,279  24.1  8.5    27.7    24.3  15.4   38.3   99.6   97.4
               394,542  28.3  9.2    31.3    21.7   9.5   33.9   101.5   100.2
Solano County
               948,816  26.5  7.7    30.6    23.9  11.3   36.4   95.4   92.2
Contra Costa County
              1,443,741  24.6  9.6    33.9    21.7  10.2   34.5   96.6    94
Alam eda County
San Francisco County     776,733  14.5  9.1    40.5    22.3  13.7   36.5   103.4   103.1
               707,161  22.9  7.9    33.2    23.5  12.5   36.8   97.8   95.6
San Mateo County
               255,602  23.8  11.9    30.8    23.5   10    35    99.7   97.8
Santa Cruz County
              1,682,585  24.7  9.3    35.4    21   9.5   34   102.8   101.9
Santa Clara County
               401,762  28.4  10.9    31.4    19.3   10   31.7   107.3   107.7
Monterey County
               53,234  32.2  8.8    31.5    19.3   8.1   31.4   102.5   99.6
San Benito County
               246,681  21.7  13.6    27    23.3  14.5   37.3   105.6   105.2
San Luis Obispo County
               399,347  24.9  13.3    29    20.1  12.7   33.4   100.1   98.1
Santa Barbara County




Sources: U.S. Department of Commerce, Census Bureau (http://www.census.gov).

Labor Force

Total labor force for the JMPR study area in 2001 was 4.5 million. As with population, the two
largest counties in terms of labor force for 2001 are Santa Clara (1.0 million) and Alameda (0.8
million) and the two smallest are San Benito (28.0 thousand) and Mendocino (43.0 thousand).
There has been a wide range of growth in labor force among study area counties. The period
1990 to 2001 has seen significant growth in San Benito (29 percent), Sonoma (28 percent), San Luis
Obispo (23 percent), and Solano (20 percent) Counties and slower than average growth in Santa
Barbara (5.4 percent), Santa Cruz (5.4 percent), Marin (5.8 percent) and San Francisco (7.8 percent)
Counties.

Unemployment in San Benito County has risen over the decade from 8.2 percent in 1990 to 11.7
percent in 2001, the highest in the study area. Monterey has the second highest unemployment
rate at 9.5 percent for 2001. Significantly lower than average unemployment rates are seen for
Marin (2.5 percent) and San Mateo (2.6 percent) Counties for 2001.




                              7
Table 3. Labor Force, Labor Force Growth, and Unemployment

                             Labor Force
                                                         Unemployment Rate
                  Labor Force                    Growth
          2001     2000    1995       1990     1990-1995 1995-2000 1990-2001  2001   2000  1995   1990

STATE TOTAL    17,362,300  17,090,800  15,412,200   15,193,400     1.4   10.9    14.3   5.3    4.9   7.8   5.8
JMPR STUDY AREA  4,522,890  4,485,360  4,032,640   3,954,280     2.0   11.2    14.4   4.3    3.0   6.1   4.3

MEN DOCIN O      42,970    42,540   41,330     37,560     10.0   2.9    14.4   6.6    6.6  9.6    7.8
SON OMA       262,600   259,100   225,300    205,300     9.7   15.0    27.9   2.9    2.6  5.5    3.9
MARIN        138,100   139,400   128,700    130,500     -1.4   8.3    5.8   2.5    1.7  4.3    2.5
N APA         66,600    65,200   57,700     57,400     0.5   13.0    16.0   3.3    3.2  6.2    4.1
SOLAN O       201,400   197,400   173,100    167,900     3.1   14.0    20.0   4.1    4.2  8.0    4.7
CON TRA COSTA    509,800   504,100   456,000    439,100     3.8   10.5    16.1   3.3    2.7  5.7    4.0
ALAMEDA       754,900   739,000   682,000    683,200     -0.2   8.4    10.5   4.5    3.0  5.8    4.0
SAN FRAN CISCO    436,900   434,300   398,200    405,300     -1.8   9.1    7.8   5.2    2.8  6.1    3.8
SAN MATEO      407,900   410,500   369,800    366,500     0.9   11.0    11.3   2.8    1.6  4.2    2.6
SAN TA CRUZ     143,900   142,100   139,800    136,500     2.4   1.6    5.4   6.1    5.6  9.3    7.1
SAN TA CLARA    1,012,700  1,008,100   867,000    840,600     3.1   16.3    20.5   4.5    2.0  4.9    4.0
MON TEREY      195,800   196,200   175,900    174,200     1.0   11.5    12.4   9.3    9.5  12.4   9.5
SAN BEN ITO      28,020    27,320   23,110     21,720     6.4   18.2    29.0   8.2    7.9  13.7   11.7
SAN LUIS OBISPO   118,600   116,000   101,600     96,200     5.6   14.2    23.3   2.8    3.0  6.6    4.8
SAN TA BARBARA    202,700   204,100   193,100    192,300     0.4   5.7    5.4   3.5    3.7  6.7    4.9


Source: U.S. Department of labor, Bureau of Labor Statistics, Division of Labor Force Statistic s

Income and Employment

Income is reported from two perspectives; 1) income by place of residence and 2) income by
place of work. Income and employment by place of work are further reported by industry.
Income and employment by place of work is also reported for wage and salary workers versus
proprietors (business owners). Differences in these measurements often reveal important
differences about the nature of the local economies that are important for socioeconomic impact
analyses. For example, a large difference between income by place of residence and income by
place of work might reveal that the economy of the area under study is largely driven by income
earned from sources unrelated to work in the area and this will dampen the impacts of
management changes that impact local work related income and employment. A large number
of proprietors indicate the prevalence of small businesses that receive special treatment under
Federal Regulatory Impact Reviews.

Income by Place of Residence versus Income by Place of Work. A wide variation is seen in the
study area when comparing income by place of residence and place of work. In 1990, net income
(the difference between income by place of residence and place of work) as a percent of income
by place of work in the study area was 34.9 percent of the income by place of work. In 2000, this
proportion has dropped to only 24.7 percent. In 2000, this ratio was negative for two of the study
area counties, San Francisco (-9.4%) and Santa Clara (-2.6%).




                                    8
Table 4. Personal Income by Place of Residence and by Place of Work For California
                                    1990                                                  2000
               A        B       A-B=C        D        C/B       D /B       A         B       A-B=C        D        C/B

                                                    Adjustment
            Income by                           N et Income as             Income by                              N et Income as
                     Income by            Adjustment         for Residence               Income by            Adjustment
             Place of                           % of Income               Place of                              % of Income
                    Place of Work Net Income*       for            as % of               Place of Work Net Income*       for
             Residence                            by Place of              Residence                              by Place of
                      ($000's)            Residence**         Income by                 ($000's)            Residence**
             ($000's)                             Work                 ($000's)                                Work
                                                   Place of Work

California        655,567,167   482,925,921   172,641,246      -75,934    35.7        0.0     1,093,065,244   825,224,182    267,841,062      121,446    32.5
JMPR Stu dy Area     186,542,551   138,283,627    48,258,924    -1,697,072    34.9       -1.2      363,936,984   291,743,151    72,193,833    -3,620,072    24.7

Mendocino          1,357,933     826,068      531,865      3,514    64.4        0.4      2,146,557     1,286,730     859,827      18,266    66.8
Sonoma           8,875,485    4,838,019     4,037,466    1,274,648    83.5        26.3      16,046,410     9,834,626    6,211,784    1,833,287    63.2
Marin            8,249,379    3,898,749     4,350,630    1,667,415    111.6       42.8      15,003,372     7,300,898    7,702,474    3,338,923    105.5
N apa            2,606,253    1,396,070     1,210,183     351,517    86.7        25.2      4,729,986     2,907,793    1,822,193     467,688    62.7
Solano           6,723,681    3,777,645     2,946,036    1,482,811    78.0        39.3      10,866,704     5,419,529    5,447,175    3,020,738    100.5
Contra Costa        21,769,539    11,492,645    10,276,894    4,399,175    89.4        38.3      39,194,448    20,729,218    18,465,230    9,187,760    89.1
Alameda          29,944,932    22,178,340     7,766,592     220,194    35.0        1.0      55,972,377    41,084,692    14,887,685    3,373,599    36.2
San Francisco       22,564,471    25,700,858    -3,136,387    -9,483,245    -12.2       -36.9      42,910,077    47,381,499    -4,471,422   -12,970,485     -9.4
San Mateo         19,708,771    12,503,307     7,205,464    1,535,803    57.6        12.3      41,512,033    33,242,279    8,269,754      77,797    24.9
Santa Cruz         5,061,315    2,809,424     2,251,891     754,967    80.2        26.9      9,610,039     5,294,057    4,315,982    2,072,654    81.5
Santa Clara        39,217,410    35,253,151     3,964,259    -4,022,888    11.2       -11.4      92,879,526    95,335,504    -2,455,978   -14,515,058     -2.6
Monterey          7,406,878    5,188,051     2,218,827      21,119    42.8        0.4      11,969,747     8,392,940    3,576,807     176,972    42.6
San Benito          654,107     344,368      309,739     121,555    89.9        35.3      1,341,148      743,924     597,224     287,779    80.3
San Luis Obispo       3,890,698    2,341,009     1,549,689     112,049    66.2        4.8      6,669,227     4,174,320    2,494,907     152,359    59.8
Santa Barbara        8,511,699    5,735,923     2,775,776     -135,706    48.4        -2.4      13,085,333     8,615,142    4,470,191     -142,351    51.9

* Net Income: There are several sources of income unrelated to work in a county that are recorded and they are generally referred to as transfer payments and property income. Social security and pensions are two of the most
important transfer payments and dividends, interest and rent are the most important sources of property income. Social Security and Medicare deductions from current workers are recorded as a deduction in income by place of work
in deriving income by place of residence. Adjustment for residence is also included in net income.
** Ad ju stment for Resid ence: The other d ifference between income by place of w ork and resid ence is called the resid ence ad justment. The resid ence ad ju stment is the net flow of incom e to a county that results
from some resid ents that work outsid e the county of resid ence and bring income into the cou nty (inflow of incom e) versu s resid ents from other counties that work inside the county but take their incomes hom e
to their cou nties of residence (ou tflow of income).



Source: U.S. Department of Commerce, Bureau of Economic Analysis, Regional Economic
Information System (REIS).

There are several sources of income unrelated to work in a county that are recorded and they are
generally referred to as transfer payments and property income. Social security and pensions are
two of the most important transfer payments and dividends, interest and rent are the most
important sources of property income. Social Security and Medicare deductions from current
workers are recorded as a deduction in income by place of work in deriving income by place of
residence. The other difference between income by place of work and residence is called the
residence adjustment. The residence adjustment is the net flow of income to a county that results
from some residents that work outside the county of residence and bring income into the county
(inflow of income) versus residents from other counties that work inside the county but take their
incomes home to their counties of residence (outflow of income).

In 1990, a total of $1.7 billion of the income in the JMPR study area was earned in counties
outside of the place of work. By 2000, this adjustment grew to $3.6 billion.

Proprietors Income and Employment. Proprietors (small businesses) account for a significant
proportion of both income and employment in study area counties. In 1990, proprietors in the
JMPR study area accounted for 9.1% of income and 14.2% of employment. In the 1990s, the
relative importance of proprietors increased. By 2000, proprietors accounted for 9.8% of the
income and 18.9% of the employment. These proportions were slightly lower than that for the
entire State of California. This is a fairly good indicator that small businesses are very important
in the study area. See Table 5.

As with other economic indicators we have summarized, there is wide variation among the
individual counties in the study area. In several of the counties in the southern section of the
study area (Monterey, San Benito, San Luis Obispo, and Santa Barbara), proprietors account for a
substantially higher amount of income and employment. Several of the counties show a
significantly lower proportions of proprietors income/total income as compared to proprietors
employment/total employment. Mendocino County’s proprietors income is only 2.0 percent of



                                                    9
total income as compared to proprietors employment which is 19.5 percent of total employment.
Other counties with similar scenarios are Solano and Alameda.

Table 5. Proprietors Income and Employment

                      1990                          2000
           Proprietors  % of Total Proprietors      Proprietors     % of Total  Proprietors
            Income   Personal Employment % of Total   Income       Personal   Employment % of Total
            ($000's)   Income   ($000's) Employment  ($000's)      Income     ($000's) Employment

California      62,148,804   9.5     2,852,772     16.8  120,226,020   11.0     3,830,282  19.5
JMPR Stu d y Area  16,889,884   9.1      779,007    360.4  35,757,023    9.8     1,032,751  1215.1

Mend ocino       179,230   2.0      11,738     16.8    323,938    2.0      14,147  19.5
Sonoma         873,075   9.8      50,195     24.4   1,859,063   11.6      65,618  24.2
Marin          820,613   9.9      44,389     29.7   1,708,962   11.4      56,043  31.6
N ap a         236,157   9.1      12,774     21.3    581,449   12.3      18,654  22.4
Solano         468,445   7.0      22,437     16.3    622,863    5.7      27,165  17.0
Contra Costa     1,660,360   7.6      84,000     21.0   3,955,517   10.1      110,789  23.4
Alam ed a       2,112,047   7.1      114,688     15.1   4,306,712    7.7      153,069  17.0
San Francisco     3,561,713   15.8      89,429     12.6   6,116,714   14.3      116,914  15.1
San Mateo       1,638,198   8.3      72,670     18.2   3,824,705    9.2      99,268  19.6
Santa Cru z       482,714   9.5      26,763     21.2   1,047,858   10.9      38,712  25.9
Santa Clara      2,295,244   5.9      145,677     13.9   6,198,826    6.7      190,713  14.8
Monterey        942,285   12.7      30,850     15.2   2,322,076   19.4      42,444  19.0
San Benito        88,965   13.6       3,756     24.0    238,064   17.8       5,416  25.1
San Lu is Obisp o    458,857   11.8      26,888     25.1   1,020,870   15.3      38,117  27.1
Santa Barbara     1,071,981   12.6      42,753     19.8   1,629,406   12.5      55,682  22.1


Source: U.S. Department of Commerce, Bureau of Economic Analysis, Regional Economic
Information System (REIS).


Indicators of Economic Health and Wealth

Unemployment rates and Per Capita Income. Unemployment rates and per capita incomes are
probably the two most popular measures used as indicators of the health and wealth of
communities, states or nations. Through the 1990s both unemployment and real per capita
income (per capita income in 2001 dollars i.e., adjusted for inflation using the Consumer Price
Index) moved in the same directions for most counties in the study area. Unemployment
throughout the study area rose during the first half of the decade and dropped significantly
during the second half. Monterey and San Benito Counties have historically had the highest
unemployment rates. Marin and San Mateo Counties have historically had the lowest
unemployment rates.

Real per capita income remained fairly level during the 1990 to 1995 period, with the counties in
the study area reporting slight increases or slight declines. It was the period 1995 to 2000 that
had sharp increases in real per capita income. The four counties with the highest real per capita
income in 2000, Marin ($62,331), San Mateo ($60,301), San Francisco ($56,834), and Santa Clara
($56,716) also had the highest increases from 1995 to 2000 in the study area. Mendocino ($25,554)
and San Benito ($25,586) had the lowest real per capita income in 2000. Monterey County had the
smallest increase from 1995 to 2000 in real per capita income in the study area




                                10
Table 6. Unemployment Rates and Per Capita Incomes

            Unemployment Rate (%)       Per Capita Income       Per Capita Income (2001 $)
          1990    1995    2000  1990     1995    2000   1990     1995    2000

California     5.8     7.8     4.9  21,882    24,339   32,149  29,653    28,280   33,058

Mend ocino     7.6     9.6     6.6  16,794    19,374   24,852  22,758    22,511   25,554
Sonom a       3.9     5.5     2.6  22,729    25,569   34,863  30,801    29,709   35,848
Marin        2.5     4.3     1.7  35,786    43,340   60,618  48,494    50,358   62,331
N ap a       4.1     6.2     3.2  23,420    27,568   37,928  31,737    32,032   39,000
Solano       4.8     8.0     4.2  19,576    20,867   27,354  26,528    24,246   28,127
Contra Costa    4.0     5.7     2.7  26,899    31,065   41,110  36,451    36,095   42,272
Alamed a      4.0     5.8     3.0  22,926    27,212   38,624  31,068    31,618   39,716
San Francisco    3.8     6.1     2.8  31,188    35,992   55,272  42,264    41,820   56,834
San Mateo      2.6     4.2     1.6  30,313    36,064   58,644  41,078    41,904   60,301
Santa Cru z     7.1     9.3     5.6  22,043    26,117   37,567  29,871    30,346   38,629
Santa Clara     3.9     4.9     2.0  26,174    32,488   55,157  35,469    37,749   56,716
Monterey      9.6    12.4     9.5  20,717    24,832   29,695  28,074    28,853   30,534
San Benito     12.1    13.7     7.9  17,758    19,687   24,883  24,064    22,875   25,586
San Lu is Obisp o  4.6     6.6     3.0  17,825    20,594   26,932  24,155    23,929   27,693
Santa Barbara    4.9     6.7     3.7  22,970    25,467   32,734  31,127    29,591   33,659




Source: Income: U.S. Department of Commerce, Bureau of Economic Analysis, Regional
Economic Information System (REIS).
Unemployment rate: U.S. Department of Labor, Bureau of Labor Statistics, Division of Labor
Force Statistics

Income and Employment by Industry. For purposes of economic impact analyses, in terms of
income and employment impacts, income and employment by industry is critical because it
provides the necessary control totals in the economic accounting system. A limitation of this
accounting system is that it is still based on the old industrial economy and generally is not
designed to yield direct insights into how the use of natural resources and the environment are
connected to the economy. Linking the economy and the environment is the very heart of the
Socioeconomic Team’s task. We need to be able to answer the question, if the use of the natural
resources of the JMPR Study Area are changed, what will be the impact on the income and
employment in the local economies? To answer this question requires supplemental information
organized so that it maps directly into the current system of accounting. In some cases, the
income and employment by industry statistics can give us upper bound estimates of the direct
portion of impact (i.e., not counting multiplier impacts) for particular uses. Our approach here is
to first look at the most aggregated information, then proceed to evaluate information collected
by other institutions and how it maps into the more aggregated statistics. Each step along the
way our objective is to see how close we can get to linking the economy with the environment
and assessing the relative importance to the economy of natural resource base uses.

    Tables 7 and 8 show the values and percentages of income and employment by industry
to counties in the study area. At this very aggregated level, the distributions for both income and
employment by industry are very similar for most of the counties. The counties in the study area
are driven by the services sector.




                             11
Table 7, Personal Income by Industry
Personal Income By Industry ($000s), 2000
                          Ag. Services,                                                                     Governm ent
                                                            Transpor-                       Finance,
                           Forestry,                    Manufactu rin            Wholesale                              and
           Total      Farm              Mining     Constru ction            tation and             Retail Trad e  Insurance, and  Services
                           Fishing, &                      g                Trad e                              Governm ent
                                                           Public Utilities                    Real Estate
                            Other                                                                        Enterp rises
California    825,224,182    8,424,649     7,943,257   2,851,715    47,012,923    128,467,273    49,823,365   47,115,376     71,496,822    71,830,864  271,009,369  119,248,569
Stud y Area    291,743,151    3,018,746     2,042,716    934,675    16,166,414    59,886,105    14,794,266   15,037,837     22,250,049    25,216,023  101,689,185   30,288,137
Mendocino      1,286,730     25,863      41,009      (D)      103,509      210,441      64,176       (D)       178,114      50,536    345,782    233,640
Sonoma        9,834,626     178,115      120,951    76,092     1,112,460     1,969,874      389,684     365,396      1,006,663     710,265   2,670,638   1,234,488
Marin        7,300,898      (833)       (D)      (D)      607,793      242,514      203,739     291,487       812,576    1,045,498   3,330,911    661,473
N apa        2,907,793     115,764      70,345      (D)      246,501      622,755      120,846       (D)       286,533     180,987    782,277    390,449
Solano        5,419,529     24,315      44,744    24,727      571,423      601,996      253,821     205,811       647,217     235,418   1,282,427   1,527,630
Contra Costa    20,729,218     60,334      164,980    365,513     1,876,810     2,079,544     1,595,809     853,299      1,975,171    2,396,625   7,068,915   2,292,218
Alam ed a      41,084,692      (119)     186,215    51,243     2,780,983     6,883,531     2,596,816    3,428,926      3,492,682    2,005,942   13,077,290   6,581,183
San Francisco    47,381,499        -      126,426    79,519     1,480,390     1,750,359     3,589,434    1,474,814      3,703,088    10,727,986   18,730,070   5,719,413
San Mateo      33,242,279     102,958        (D)      (D)     1,751,030     4,428,802     2,789,664    1,524,252      2,605,707    2,900,905   15,353,673   1,637,553
Santa Cruz      5,294,057     221,624      75,315     5,204      377,375      922,955      169,562     256,572       563,451     298,412   1,668,896    734,691
Santa Clara     95,335,504     211,521      297,463    225,922     3,805,161    38,327,098     2,130,155    5,711,362      4,705,760    3,322,790   31,531,680   5,066,592
Monterey       8,392,940    1,387,752      628,427     9,550      437,838      499,764      284,149     313,453       794,580     473,230   1,893,698   1,670,499
San Benito       743,924     118,750      26,672      (D)      72,983      96,512        (D)     51,363       70,241      33,409    112,627    120,840
San Luis Obispo   4,174,320     151,587      93,602    12,500      418,977      334,179      322,879     107,693       529,648     251,528   1,101,806    849,921
Santa Barbara    8,615,142     421,115      166,567    84,405      523,181      915,781      283,532     453,409       878,618     582,492   2,738,495   1,567,547
Personal Income By Industry (% of  Total), 2000
                       1.0       1.0       0.3       5.7       15.6        6.0      5.7         8.7        8.7     32.8      14.5
California
                       1.0       0.7       0.3       5.5       20.5        5.1      5.2         7.6        8.6     34.9      10.4
Stud y Area
Mendocino                   2.0       3.2               8.0       16.4        5.0                13.8        3.9     26.9      18.2
Sonoma                    1.8       1.2       0.8      11.3       20.0        4.0      3.7        10.2        7.2     27.2      12.6
                       0.0                       8.3       3.3        2.8      4.0        11.1       14.3     45.6      9.1
Marin
                       4.0       2.4               8.5       21.4        4.2                9.9        6.2     26.9      13.4
N apa
                       0.4       0.8       0.5      10.5       11.1        4.7      3.8        11.9        4.3     23.7      28.2
Solano
Contra Costa                 0.3       0.8       1.8       9.1       10.0        7.7      4.1         9.5       11.6     34.1      11.1
                       0.0       0.5       0.1       6.8       16.8        6.3      8.3         8.5        4.9     31.8      16.0
Alam ed a
                       0.0       0.3       0.2       3.1       3.7        7.6      3.1         7.8       22.6     39.5      12.1
San Francisco
San Mateo                   0.3                       5.3       13.3        8.4      4.6         7.8        8.7     46.2      4.9
Santa Cruz                  4.2       1.4       0.1       7.1       17.4        3.2      4.8        10.6        5.6     31.5      13.9
                       0.2       0.3       0.2       4.0       40.2        2.2      6.0         4.9        3.5     33.1      5.3
Santa Clara
                      16.5        7.5       0.1       5.2       6.0        3.4      3.7         9.5        5.6     22.6      19.9
Monterey
San Benito                 16.0        3.6               9.8       13.0                6.9         9.4        4.5     15.1      16.2
San Luis Obispo                3.6       2.2       0.3      10.0       8.0        7.7      2.6        12.7        6.0     26.4      20.4
                       4.9       1.9       1.0       6.1       10.6        3.3      5.3        10.2        6.8     31.8      18.2
Santa Barbara



Table 8, Employment by Industry
Employment By Industry (number of jobs), 2000
                          Ag. Services,                            Transpor-                       Finance,          Governm ent
                           Forestry,                    Manu factu rin   tation and   Wholesale              Insu rance,           and
           Total      Farm              Mining     Constru ction                             Retail Trad e           Services
                           Fishing, &                      g        Pu blic    Trad e                and Real          Governm ent
                            Other                               Utilities                       Estate           Enterp rises
California    19,654,877     328,861       408,406    38,870     1,040,795    2,047,587      879,014     912,202      3,006,849    1,696,230   6,759,116   2,536,947
Stud y Area    5,476,530     81,482        88,267    7,457      301,249     595,826      246,627     232,547       813,704     478,845   2,009,938    607,067
Mend ocino      49,818      3,163        2,012     (D)       3,139      6,128       1,425       (D)        8,768      2,930     14,662     6,437
Sonom a       271,593      9,475        6,167     533       20,665      34,060       8,269      8,581       44,113      23,514     86,505     29,711
Marin        177,605       843         (D)     (D)       12,179      5,646       4,437      5,717       29,750      23,498     77,433     14,410
N ap a        83,401      5,350        2,703     (D)       5,183      11,227       1,977       (D)       12,941      5,947     26,396     9,468
Solano        159,852      2,597        2,346     535       12,524      11,066       5,179      5,108       30,569      10,758     45,904     33,266
Contra Costa     473,822      2,920        7,314    2,308       35,875      28,015      24,829     15,107       77,652      58,440    173,520     47,842
Alamed a       902,712      1,155        7,953     710       51,011     103,259      50,453     62,191       128,300      60,754    312,288    124,638
San Francisco    773,679       -         2,990     587       26,111      32,222      43,684     23,879       107,614     103,642    335,359     97,591
San Mateo      506,154      3,449         (D)     (D)       27,773      39,328      46,863     23,409       71,099      49,874    206,770     31,770
Santa Cruz      149,630      8,949        2,995     132       8,878      11,980       3,813      5,708       26,456      11,247     50,902     18,570
Santa Clara    1,290,679      5,295        12,236     861       63,005     271,595      37,638     63,107       168,551      79,712    489,782     98,897
Monterey       223,754     18,710        26,197     281       9,967      11,062       6,182      6,768       34,662      14,996     60,034     34,895
San Benito      21,573      2,079        1,098     (D)       1,713      2,628        (D)      1,380        3,474      1,363     4,295     2,896
San Lu is Obisp o  140,869      5,050        5,177     323       10,325      8,838       5,647      3,886       27,359      12,519     41,096     20,649
Santa Barbara    251,389     12,447        9,079    1,187       12,901      18,772       6,231      7,706       42,396      19,651     84,992     36,027
Employment By Industry (% of jobs), 2000
California                 1.7        2.1      0.2       5.3       10.4        4.5        4.6       15.3       8.6     34.4      12.9
Stud y Area                 1.5        1.6      0.1       5.5       10.9        4.5        4.2       14.9       8.7     36.7      11.1
Mend ocino                 6.3        4.0               6.3       12.3        2.9                17.6       5.9     29.4      12.9
Sonom a                   3.5        2.3      0.2       7.6       12.5        3.0        3.2       16.2       8.7     31.9      10.9
Marin                    0.5                        6.9       3.2        2.5        3.2       16.8       13.2     43.6       8.1
N ap a                   6.4        3.2               6.2       13.5        2.4                15.5       7.1     31.6      11.4
Solano                   1.6        1.5      0.3       7.8       6.9        3.2        3.2       19.1       6.7     28.7      20.8
Contra Costa                0.6        1.5      0.5       7.6       5.9        5.2        3.2       16.4       12.3     36.6      10.1
Alamed a                  0.1        0.9      0.1       5.7       11.4        5.6        6.9       14.2       6.7     34.6      13.8
San Francisco                0.0        0.4      0.1       3.4       4.2        5.6        3.1       13.9       13.4     43.3      12.6
San Mateo                  0.7                        5.5       7.8        9.3        4.6       14.0       9.9     40.9       6.3
Santa Cruz                 6.0        2.0      0.1       5.9       8.0        2.5        3.8       17.7       7.5     34.0      12.4
Santa Clara                 0.4        0.9      0.1       4.9       21.0        2.9        4.9       13.1       6.2     37.9       7.7
Monterey                  8.4        11.7      0.1       4.5       4.9        2.8        3.0       15.5       6.7     26.8      15.6
San Benito                 9.6        5.1               7.9       12.2                 6.4       16.1       6.3     19.9      13.4
San Lu is Obisp o              3.6        3.7      0.2       7.3       6.3        4.0        2.8       19.4       8.9     29.2      14.7
Santa Barbara                5.0        3.6      0.5       5.1       7.5        2.5        3.1       16.9       7.8     33.8      14.3




(D) Not shown to avoid disclosure of confidential information, but the estimates are included in the totals.


Source: U.S. Department of Commerce, Bureau of Economic Analysis, Regional Economic
Information System (REIS).




                                                    12
Commercial fisheries would be included under the category “Agricultural Services, Forestry,
Fishing and Other”. In 2000, this category accounted for only 0.7% of income and 1.6% of
employment by place of work in the study area. Several of the counties (Monterey, San Benito,
Mendocino, and Napa) did have higher proportions than the average. This serves as a first step
upper bound on the proportion of income by place of work for the direct impacts of the
harvesting portion (not including multiplier impacts) of commercial fishing. Other direct
impacts of commercial fishing would include some portion of Wholesale Trade (e.g., fish houses
and buyers) and some portion of Manufacturing (fish processing).

The Retail Trade and Services sectors are where the direct impacts of tourism/recreation would
be included. However, these categories are too broad to yield any useful bounds for estimation
of the direct impacts for tourism/recreation. The accounts, as stated above, were simply not
designed for this purpose. In any case, the first step of linking the three natural resource use
activities to the economy yielded only limited insights.

Income and Employment: Additional Disaggregation

The accounts reviewed above are what are called two-digit SIC (Standard Industrial
Classification) level of aggregations. The SIC system of accounting can actually go down to four
and six digit levels, which contain more specificity about the activity. However, because of
nondisclosure rules to protect the privacy of business information, the four digit level is the best
available for large counties and even here there are many categories for which information is not
reported due to nondisclosure. In this step, we will explore how much detail we can glean about
the three sectors that are our primary interest. Only income is reported at the lower levels of
disaggregation.

Commercial Fishing Industry. In 1995, fishing income was a little over $117 million in the State
of California. This represents less than one percent (0.02%) of income by place of work. Two of
the counties (Mendocino, 0.66% and Monterey, 0.32 percent) do have higher proportions of
fishing income, however, they remain under one percent of total income by place of work. The
year 1995 was chosen for analysis because it was the last year that a significant number of
counties were able to release data. Again, this would be the income received by harvesters or
commercial fishermen including crews and proprietors of the harvesting operations. It would
not include buyers and fish houses or processors of commercial fish products.

Table 9. Direct Income to Commercial Fishing Harvesting Sector ($000s)

          1990   1991    1992   1993    1994   1995    1996   1997   1998   1999    2000
California    170,671  140,424  129,910  133,414  120,338  117,640  109,820  106,752  94,532  103,807  103,391
Mendocino      6,043   5,386   4,975   5,545   6,079   6,009   5,608   6,148   5,207   6,241    6,085
Sonom a       2,547   2,065   1,946   1,286   1,593   1,327   1,399    796    709    770     824
Marin         (D)   1,274   1,246   1,452   1,702   1,394    (D)    (D)    (D)    (D)     (D)
Napa          (D)    123    126    149    207    (L)    (L)    52    50    (D)     60
Solano         400    204    140    154    236    127    135    154    145    164     (D)
Contra Costa      (D)   1,115   1,052   1,157   1,526   1,034    917    687    (D)    (D)     (D)
Alamed a       2,764   2,279   1,783   1,570   1,410   1,549    (D)    (D)    (D)    (D)     (D)
San Francisco     (D)    631    540    323    421    546   1,773    652    (D)    859     (D)
San Mateo       (D)   4,375   3,276   3,644   3,860   2,707    (D)    (D)   3,015   3,597     (D)
Santa Cruz      1,113    917    649    639    739    563    630    764    (D)    (D)     (D)
Santa Clara      677    644    572    545    578    433    472    469    364    453     463
Monterey        (D)  21,500  23,929   24,002  13,994   18,898  13,126   11,682    (D)    (D)     (D)
San Benito       (L)    (L)    (L)    (L)    (L)    (L)    (L)    (L)    (L)    (L)    (L)
San Luis Obispo    (D)   4,328   3,905   4,851   4,895    (D)    (D)    (D)    (D)   4,173     (D)
Santa Barbara     (D)   3,797   3,261   3,206   3,292   2,909   2,970   2,148    (D)    (D)     (D)
(D) Not shown to avoid disclosure of confidential information, but the estimates are included in the totals.
(L) Less that $50,000, but the estimates for this item are included in the totals.
Source: U.S. Department of Commerce, Bureau of Economic Analysis, Regional Economic
Information System (REIS).


                                13
Tourism and Recreation. Tourism/recreation has been a notoriously difficult activity to
document because the expenditures made while undertaking the activities are spread across so
many sectors. Few that really capture the industry. Three commonly used are “Eating and
Drinking Places” (within Retail Trade), “Hotels and Other Lodging Places”, and “Amusement
and Recreation Services” (within Services). A fourth is sometimes included “Museums, Botanical
and Zoological Gardens” (within Services). The first three indicators of tourism/recreation are
commonly used by the United Nations Environmental Programme when profiling third world
countries for economic development programs. Unfortunately, these three sectors tell us very
little about tourism/recreation. They are not good discriminators across areas in a single point in
time, nor are they good indicators of the trends of tourism/recreation over time in a given place.
Life style changes have resulted in high proportions of the local population eating out. Business
related travel is a major portion of hotel and motel business and some communities may have
extensive numbers of hotel and motels with very little in the way of tourism/recreation. In
highly diverse economies like the U.S., measurements from these three industries yield nothing
of use to get us close to linking natural resource uses with the economy. We must look elsewhere
for supplemental information to get us closer to our goal.

Income and Employment: Supplemental Information. In step 2, we were able to narrow in on commercial
fishing contributions to the local economies at the first stage of direct impacts. The industry accounts did
not support any additional insights for tourism/recreation. In this step, we seek out additional sources of
information and to see what they might reveal about the activities and their income and employment
impacts.

Commercial Fishing Industry. For the commercial fisheries, we will first go to information compiled by
the Pacific Fisheries Management Council (PFMC). The PFMC maintains a data base called PacFin which
reports commercial fish landings by port, county and species. The PFMC also has developed a regional
economic impact model to translate ex vessel value (i.e., the dollar amounts received by harvesters for their
catch) to total income generated within the county where landed. This amount will include full
multiplier impacts.


VALUE OF MARINE SCIENTIFIC RESEARCH IN THE STUDY AREA

Data gap for possible further investigation.

TOURISM AND RECREATION

Below we present the information and our preliminary assessment of the range of relative
importance of tourism/recreation to the JMPR study area economy. Marine recreation uses in
the JMPR study area would be some sub-set of these estimates.

California Travel Direct Impacts by County - Method

A study, California Travel Impacts by County, 1992-2000, prepared by Dean Runyan Associates for
the California Travel and Tourism Commission and the Division of Tourism of the Technology,
Trade and Commerce Agency was completed in March 2002. As stated in the introduction, the
report describes the economic impacts of travel to and through the state of California over the
time period 1992 to 2000. These estimates of the direct impacts associated with traveler spending
in California were produced using the Regional Travel Impact Model (RTIM) developed by De an
Runyan Associates. The input data used to detail the economic impacts of the California travel




                           14
industry were derived from various local, state and federal sources. For accuracy, the following
explanation of analysis methods is from the report.

Types Of Travel Impacts Included. Most of the travel that occurs in California is included in the
scope of this analysis. All trips to California by U.S. residents and foreign visitors are included.
The travel of California residents to other destinations within California is included, provided
that it is neither commuting nor other routine travel. Travel to non-California destinations by
California residents is not included as a component of destination spending. Outbound air travel
impacts are included in the air transportation category. The impacts associated with both
overnight and day travel are included if the travelers remain at the destination overnight or the
destination is over 50 miles, one-way, from the traveler's home. These definitions are used to
screen and, if necessary, to interpret and adjust local data used for travel impact measurements.
The most conservative interpretation is employed where data limitations cause deviations from
the above definition. The terms “traveler” and “visitor” are used interchangeably in this report.
Both represent a person who is traveling in the state of California, away from his or her home, on
a trip as defined above. The purpose of such travel can be for business, pleasure, shopping, to
attend meetings, or for personal, medical or educational
purposes.

Air Transportation And Travel Arrangement. This analysis focuses on travel and tourism as a
component of local and statewide economies, and therefore focuses on destination-specific
impacts. However, some impacts associated with non-destination-specific spending and
employment are included. These non-destination-specific industries are air transportation and
travel arrangement (travel agents and tour operators). These industries are classified as
nondestination-specific because they provide services for travel to, through and from specific
destinations. It is important to note, however, that the impacts of these industries (e.g.,
employment) occur within specific geographic areas, primarily those with commercial airport
facilities.

Thirty-three counties in California had scheduled passenger air transportation in 2000. The
associated employment impacts are allocated in this report to the county in which the
employment is based. The associated spending impacts are also allocated to that county as non-
destination spending.1 However, it is important to recognize that the benefits from air travel also
extend to those counties that do not provide air transportation. This might include, for example,
an overnight visitor in Mendocino County who traveled by air from Chicago to Oakland.
Because air transportation facilities provide travel services that benefit businesses throughout the
state, it is appropriate to include air transportation as a component of the travel industry. But
because of the regional character of air travel, it is sometimes useful to exclude this sector when
analyzing local economic impacts. These considerations are, of course, most relevant with respect
to those counties with the largest air transportation impacts.

Direct Versus Indirect Impacts Or “Multipliers”. Economic impact measurements reported herein
represent only direct economic impacts. Direct economic impacts include only the spending by
travelers and the employment generated by that spending. Indirect or “multiplier” effects, which
refer to the additional spending of businesses and employees induced by travel spending, are not
included.


 San Francisco and San Mateo counties are the only exception. The employment associated with
1

air transportation employment in San Mateo County is allocated to San Mateo, whereas most of
the air transporation travel spending is allocated to San Francisco.



                         15
Impact Categories. The specific categories of travel impacts included in this analysis are as follows:

   Expenditures: Purchases by travelers during their trip, including lodging taxes and other
   applicable local and state taxes, paid by the traveler at the point of sale.

   Total Earnings: The earnings (wage and salary disbursements, earned benefits and
   proprietor income) of employees of businesses that receive travel expenditures. Only the
   earnings attributable to travel expenditures are included; this typically is only a portion
   of all business receipts.

   Employment: Employment associated with the above earnings; this includes both full-
   and part-time positions of wage and salary workers as well as proprietors.

   Local Tax Receipts: Tax receipts collected by counties and municipalities, as levied on
   applicable travel-related purchases.

   State Tax Receipts: State taxes, such as sales and gasoline taxes, attributable to travel
   expenditures and business taxes as levied on travel industry firms and employees.

Visitor Categories. Travelers are classified according to the type of accommodation in which they
stay. The types of visitors are as follows:

   Hotel/Motel/B&B Guest: Travelers staying in hotels, motels, resorts, bed & breakfast
   establishments, and other commercial accommodations, excluding campgrounds, where
   a transient lodging tax is collected.

   Private Camper: Travelers staying in a privately owned (i.e., commercial) campground.

   Public Camper: Travelers staying in a publicly managed campground such as those
   managed by the California State Parks and Recreation Commission, the U.S. Forest
   Service or the National Park Service.

   Private Home Visitor: Travelers staying as guests with friends or relatives.

   Vacation Home Visitor: Travelers using their own vacation home or timeshare and those
   borrowing or renting a vacation home where transient lodging tax is not collected.

   Day Visitor: Both in-state and out-of-state residents whose trip does not include an
   overnight stay at a destination in California.

The “travel industry” as described in this report refers to a collection of businesses that provide
goods and services to the traveling public. These types of businesses are coded according to the
U.S. Office of Management and Budget's Standard Industrial Classifications (SIC).

Local taxes refer to all city and county taxes. These include local sales taxes and room taxes.
Property taxes are not included. State taxes include the state sales tax, the state gasoline fuel tax,
and income taxes on travel industry firms and employees.



                         16
Interpretation Of Impact Estimates. Users of this information should be aware of several issues
regarding the interpretation of the impact estimates contained herein:

   When comparing the impact estimates associated with different locations or different
   time periods, it is more appropriate to focus on destination spending (which excludes air
   transportation) rather than total travel spending.
   The estimates in this report are expressed in current dollars. There is no adjustment for
   inflation.
   The employment and business service categories found in the impact tables do not
   perfectly correspond to the industry categories used in various state and federal
   government publications. The spending and employment categories used in this report
   refer to a particular type of service, as opposed to an industry classification. For example,
   the accommodations category in this report includes only that spending or employment
   attributable to paid accommodations. It does not include spending on eating and
   drinking in a hotel restaurant or recreational services provided at a resort. In addition,
   government employees are not distinguished from the employees of commercial
   enterprises, as is often the case in other data series published by government agencies.

In the detailed table for each county, the first breakout, Travel Spending by Type of Traveler
Accommodation, shows the travel spending by each type of traveler in the county. The second
breakout, Travel Spending by Type of Business Service, indicates the amount of expenditures for
different goods and services (e.g., accommodations, recreation) by all traveler types. Destination
spending refers to all travel-related spending in the county except air transportation and travel
arrangement.

California Travel Impacts by County – Results

Total travel spending in the JMPR study area was estimated by Dean Runyan at $25.2 billion in
2000. This accounts for 1/3 of the $75.4 billion that travelers to California contributed to the state
economy. Four billion was spent on air transportation in the study area in 2000. Total
destination spending, total spending excluding air transportation and travel arrangement, was
estimated to be $21.0 billion.

Employment in the study area generated by travel spending was estimated to be approximately
250 thousand. While San Francisco County accounts for approximately $5.6 billion, or about ¼,
of the travel destination spending in the study area, it accounts for a disproportionately small
amount of the employment generated by travel spending.

Spending on recreation related travel activities was estimated at $3.5 billion. Recreation travel
spending, the sector we are most interested in, is largely driven by five counties. San Francisco
($1.0 billion), Santa Clara ($484 million), San Mateo ($355 million), Monterey ($300 million), and
Alameda ($290 million) Counties together account for 69.8 percent of the recreational spending in
the study area.

In the study area, an estimated 47,793 jobs are generated by the recreation component of travel
spending. Recreational travel employment is driven by the same counties, with the exception of
San Francisco, which was found to employ a very small number of people (15).




                         17
Total earnings generated by travel spending in the study area was estimated to be $8.5 billion in
2000. Again, the five counties previously mentioned, San Francisco ($2.1 billion), Santa Clara ($1.2
billion), San Mateo ($1.7 billion), Monterey ($629 million), and Alameda ($807 million) account
for 76.3 percent of the earnings generated by travel spending in the study area.

Total tax revenues generated by travel spending in the study area were $1.6 billion in 2000. Of
this, $676 million were local taxes and $942 million were state taxes. Local taxes refer to sales and
use taxes, and transient occupancy taxes collected by cities and counties. Property taxes and
business license taxes are not included. State taxes include the state sales tax, the state gasoline
fuel tax, corporate income taxes and personal income taxes.

Table 10. Travel Impacts, 2000

                Study       Contra        Mendo-  Mon-        San     San  San Luis  San    Santa  Santa  Santa
            CA        Alameda         Marin            N apa                                      Solano   Sonoma
                 Area       Costa         cino   terey       Benito   Francisco Obispo   Mateo   Barbara  Clara  Cruz
Travel Spending by Type of Traveler Accommodation ($Million)
D estination Spending  66,000 20,977   2,008    896    516    66   1,853   628     74    5,592   961   2,178   1,151  3,192   514    430    918
Hotel, Motel, B&B    34,500 13,580   1,315    422    239    35   1,256   386     12    4,355   471   1,408    684  2,206   247    140    405
Private Campground    2,500   425     3    29    38    3    12    19     19     -     72    20     23    83    37    40    28
              500   101    -      6    4    1    15    2     1     -     20     9     16    2    12     1    14
Public Campground
Private Home       7,100  1,788    245    179    81    7    107    20     21     245    68    254    112   257    36    76    81
Vacation Home       3,600   451     11    26    25    4    44    16     2     28    76    15     27    16    68     7    87
D ay Travel       17,700  4,631    433    235    130    18    419   185     20     964   254    471    290   627   114    167    304
             8,800  4,053    504    -      5    9    25    4     0    2,853    7    457     14   165   -     -      10
Air Transportation
Travel Arrangement     600    58     1     9    11    1     7    1     0      5    2     2     4    6     5     1     5
Total Spending      75,400 25,236   2,531    905    533    75   1,885   633     75    8,502   970   2,659   1,169  3,419   518    430    933
Travel Spending by Type of Business Service ($Million)
D estination Spending  66,000 20,977   2,008    896    516    66   1,853   628     74    5,592   961   2,178   1,151  3,192   514    430    918
             12,900  4,963    434    142    97    13    461   139     9    1,603   196    467    242   818   135     50    158
Accommodations
Eating, D rinking    16,000  5,072    442    180    130    16    500   153     22    1,401   259    491    304   749   123     94    209
Food Stores        2,200   599     51    28    22    2    50    19     7     123    44    55     36    90    23    19    30
Ground Transport     8,800  2,372    423    266    56    9    71    26     4     290    62    380     92   447    46    86    116
Recreation        12,100  3,487    290    119    92    12    300   137     14    1,003   147    355    182   484    79    84    188
Retail Sales       13,900  4,484    367    162    119    14    471   154     18    1,173   254    430    295   604   108     98    217
Air Transportation    8,800  4,053    504    -      5    9    25    4     0    2,853    7    457     14   165   -     -      10
Travel Arrangement     600    58     1     9    11    1     7    1     0      5    2     2     4    6     5     1     5
Total Spending      75,400 25,236   2,531    905    533    75   1,885   633     75    8,502   970   2,659   1,169  3,419   518    430    933
Earnings Generated by Travel Spending ($Million)
Total Earnings      24,900  8,458    807    253    191    25    629   221     22    2,111   306   1,705    372   1,204   178    127    309
Employment Generated by Travel Spending (Jobs)
Accommodations     201,000 66,881   6,690   2,300   1,390    201  6,100  1,820    170   16,700   3,810   5,820   4,100  11,560  2,480   1,040   2,700
            398,000 109,458   10,500   4,470   2,870    398  10,390  3,150    640   23,500   7,740   9,460   8,030  16,370  3,440   2,990   5,510
Eating, D rinking
Food Stores       12,000  2,812    260    150    100    12   220    80     40    400    280    220    200   420   140    120    170
Ground Transport     47,000 11,857   2,480   1,040    230    47   300   150     20   1,500    330   1,740    500  2,130   180    510    700
Recreation       248,000 62,278   5,910   2,550   1,730    248  4,590  2,390    210   14,500   3,250   5,870   3,570  9,070  1,890   2,280   4,220
Retail Sales      114,000 32,124   2,870   1,330    870    114  3,220  1,040    170    6,500   2,500   2,720   2,560  4,340   990   1,030   1,870
             52,000 22,792   3,110    -     40    52   290    20    -     1,600    60  16,050    130  1,360   -     -      80
Air Transportation
Travel Arrangement    28,000  8,899    900    490    520    28   180    60      1   2,600    140    840    250  2,220   300     60    310
Total Employment   1,100,000 317,100   32,710  12,330   7,760   1,100  25,280  8,710   1,250   67,300  18,120  42,710  19,330  47,480  9,430   8,020   15,570
Tax Revenues Generated by Travel Spending ($Million)
             1,700   676     58    22    11    2    53    17     1    258    21    61     32   101    14     7    19
Local Taxes
State Taxes        3,100   942     99    56    25    3    76    25     3    211    43    115     52   145    22     24    43
Total Taxes        4,800  1,618    157     78    35    5    130    42     5    469    64    177     83   246    36     31    62




Table 11. Total Recreation Travel Spending by County, 1992-2000 ($Millions)




                                              18
                                                          Average
          1992   1993   1994   1995      1996   1997   1998   1999   2000   Annual
                                                          Change
State Total      7,400   7,600   7,900   8,300     9,100  10,000  10,700  11,500  12,100   6.4
JMPR Study Area    1,975   2,066   2,169   2,334     2,591   2,869   3,080   3,386   3,536   7.6
Alam ed a        138    144    148    160      179    197    215    254    290   9.8
Contra Costa       70    73    76    81       87    97    106    113    119   6.9
Marin          49    55    58    61       67    73    78    86    92   8.3
Mend ocino        43    43    45    48       49    51    54    57    61   4.5
Monterey        186    193    199    212      236    254    266    295    300   6.2
N apa          76    79    88    98      106    117    125    128    137   7.6
San Benito        9     9     9    10       11    12    12    13    14   6.0
San Francisco      536    566    602    649      730    813    872    992   1,003   8.2
San Lu is Obisp o    100    105    101    102      112    119    127    136    147   5.0
San Mateo        206    213    228    250      278    310    330    346    355   7.1
Santa Barbara      119    123    129    135      143    153    163    174    182   5.5
Santa Clara       221    233    250    281      328    382    423    456    484  10.4
Santa Cruz        50    52    52    55       60    66    69    78    79   6.0
Solano          53    55    57    58       61    67    70    76    84   5.9
Sonom a         119    123    127    134      145    158    170    181    188   5.9


Source: The California Travel and Tourism Commission, The California Technology, Trade, and
Commerce Agency, and Dean Runyan Associates.




Table 12. Direct Recreation Travel-Generated Employment by County, 1992-2000 (Jobs)

                                                          Average
          1992   1993   1994   1995      1996   1997   1998   1999   2000   Annual
                                                          Change
State Total     195,000  194,000  206,000  210,000    222,000  241,000  236,000  248,000  248,000   3.1
JMPR Stud y Area   45,480  46,120  49,740  51,790     55,190  60,170  60,460  64,930  63,010   4.2
Alam ed a       3,580   3,630   3,840   4,000     4,310   4,680   4,810   5,650   5,910   6.6
Contra Costa     1,970   1,980   2,130   2,190     2,270   2,510   2,520   2,630   2,550   3.4
Marin         1,150   1,260   1,360   1,400     1,460   1,590   1,610   1,740   1,730   5.3
Mend ocino       890    860    930    960      940    970    920    960    980   1.3
Monterey       3,570   3,600   3,800   3,940     4,210   4,460   4,420   4,820   4,590   3.3
N apa         1,860   1,880   2,140   2,300     2,410   2,610   2,590   2,490   2,390   3.4
San Benito       170    180    180    180      200    210    200    210    210   2.8
San Francisco     9,800  10,000  11,000  11,500     12,400  13,600  13,800  15,500  14,500   5.2
San Lu is Obisp o   2,790   2,850   2,820   2,750     2,900   3,050   2,970   3,150   3,250   2.0
San Mateo       4,400   4,420   4,860   5,160     5,530   6,060   6,050   6,210   5,870   3.8
Santa Barbara     2,780   2,790   3,000   3,050     3,110   3,280   3,440   3,570   3,570   3.2
Santa Clara      5,470   5,600   6,210   6,750     7,580   8,700   8,850   9,410   9,070   6.7
Santa Cruz      1,570   1,580   1,640   1,690     1,760   1,900   1,890   2,010   1,890   2.4
Solano        1,890   1,900   2,010   2,000     2,030   2,180   2,080   2,210   2,280   2.4
Sonom a        3,590   3,590   3,820   3,920     4,080   4,370   4,310   4,370   4,220   2.1




Source: The California Travel and Tourism Commission, The California Technology, Trade, and
Commerce Agency, and Dean Runyan Associates.

Our next task is to identify how much of the tourism/recreation currently relates to marine
resource uses.

Marine Related Recreation.

Generally, we know that recreational fishing, scuba diving (both consumptive and non
consumptive), pleasure boating, whale and other wildlife watching, surfing, kayaking, personal



                              19
watercraft use, and beach visitation take place in the three JMPR sanctuaries. Quantitative
estimates of the amount of activity in the study area or in the general area off the coast of
Northern California are few in number and often incomplete. More is known about recreational
fishing than for the other activities.

National Survey on Recreation and the Environment (NSRE) 2000. For the NSRE, "marine
recreation" was defined as participation in at least one of 19 activities/settings, including beach
visitation, visitation to watersides besides beaches for outdoor recreation, swimming, snorkeling,
scuba diving, surfing, wind surfing, fishing, motor-boating, sailing, personal watercraft use,
rowing, canoeing, kayaking, hunting for waterfowl in a water-based surrounding, viewing or
photographing birds in a water-based surrounding, viewing or photographing other wildlife in a
water-based surrounding, and viewing or photographing scenery in a water-based surrounding.

For activities, "marine" was defined as activities in oceans, sounds, and in mixed fresh-saltwater
in tidal portions of rivers and bays. For settings (e.g., beaches, watersides, water-based
surroundings, etc.) "marine" was defined as saltwater or saltwater surroundings such as oceans,
sounds, and mixed fresh-saltwater in tidal portions of rivers and bays. (Leeworthy and Wiley,
2000)

The results below are for the State of California. Activities in the JMPR study area would be a
subset of the state total.

In 2000, beach visitation was the most popular marine related activity in California. 12.6 million
people visited the beach for a total of over 150 million days. Viewing or photographing Scenery
was second in terms of total days with 4.2 million people and 108 million days. Swimming was
the activity with the third highest participation rate with 8.4 million people spending almost 95
million days swimming. Other popular activities were bird watching, viewing other wildlife,
surfing, visiting watersides besides beaches, and fishing.

Table 13. California Marine Recreation




                        20
                                          By Place of
                         By Place of Activity
                                          Resid ence
       Activity                N u mber of  N umber of   N umber of
                   Particip ation
                           Particip ants  Days    Participants
                    Rate (%)
                            (millions)  (millions)   (millions)
Beach Visitation               6.1      12.6    151.4      9.1
Visiting Watersid es Besid es Beaches    0.7      1.5     20.7      1.1
Sw imming                  4.1      8.4     94.6      6.1
Snorkeling                  0.3      0.7     3.8      1.3
Scu ba Diving                0.1      0.3     1.4      0.4
Su rfing                   0.5      1.1     22.6      0.7
Wind su rfing                0.0      0.1             0.1
Fishing                   1.3      2.7     20.3      2.5
Motorboating                 0.8      1.5     11.6      1.5
Sailing                   0.5      1.1     6.8      1.0
Personal Watercraft Use           0.3      0.7     2.9      0.7
Canoeing                   0.1      0.2             0.2
Kayaking                   0.2      0.4             0.5
Row ing                   0.1      0.3             0.2
Water-skiing                 0.1      0.3     3.3      0.2
Bird Watching                1.3      2.6     65.8      1.9
View ing Other Wild life           1.2      2.6     38.6      4.4
View ing or Photograp hing Scenery      2.0      4.2     107.9      2.9
H unting Waterfow l             0.1      0.1             0.1
Source: National Survey on Recreation and the Environment (NSRE) 2000.

Marine Recreational Fishing.

Marine Angler Expenditures in the Pacific Coast Region, 2000. Approximately 440 thousand
saltwater anglers fished 2.2 million days in the Northern California region in 2000. In addition to
the leisure benefits these anglers received from participating in saltwater fishing, their
expenditures generated monetary benefits in the form of sales, income, and employment
throughout the Pacific Coast. A variety of goods and services were purchased from sporting
goods stores, specialty stores, bait and tackle shops, guide services, marinas, grocery stores,
automobile service stations, and restaurants. The economic impacts of these purchases rippled
throughout the Pacific Coast’s economy and provided income and jobs in manufacturing,
transportation industries, and service sectors (NMFS, 2001)

The majority of saltwater anglers, 388 thousand, were residents. Most of the resident mode of
fishing was private/rental boats and shore. A much higher proportion of the 51 thousand non-
resident anglers fished from party/charter boats.

Average per person trip expenditures in 2000 were highest for charter/party boats for both
residents ($112) and non-residents ($328). Average party/charter fees for residents were $56 and
$52 for non-residents. Average per person annual expenditures was $1,588.

Saltwater anglers in Northern California spent a total of $761 million in 2000. Anglers on
party/charter boats spent $35 million; on private/rental boats spent $46 million; and on shore
spent $48 million. Of this, residents spent $741 million and non-residents spent $21 million.




                        21
Taken as a whole, the expenditure estimates provide an indication of the importance of marine
recreational fishing to the economies of the coastal counties in Northern California.


Figure 2. The Northern California Region, NMFS




Table 14. Estimated Number of Days Fished and Participants in Northern California by Mode
and Resident Status, 2000

                     Resident    N on-Resident     Total
Total D ays                 2,074,628      92,377     2,167,005
                       198,267      39,429      237,696
Party/Charter Boat D ays
                       963,959      30,961      994,920
Private/Rental Boat D ays
                       912,402      21,987      934,389
Shore D ays

                       387,927      51,221      439,148
Total Participants

Average D ays per Participant           5.3        1.8        4.9




Table 15. Northern California Average Per Person Expenditures by Mode and Resident Status




                       22
                     Resident    N on-Resident
Trip Expenditures
Party/Charter Boat              112.03      327.73
Private/Rental Boat              43.91      125.46
Shore                     48.48      173.80

Annual Expenditures             1,587.84


Table 16. Northern California Total Expenditures by Mode and Resident Status ($000s)

                     Resident    N on-Resident     Total
Trip Expenditures
Party/Charter Boat              22,212      12,922      35,134
Private/Rental Boat              42,322       3,884      46,206
Shore                     44,229       3,821      48,050

Annual Expenditures              631,993               631,993
Total Resident Expenditures          740,758               740,758
Total Expenditures              740,758      20,628      761,385


Source: National Marine Fisheries Service, Marine Angler Expenditures in the Pacific Coast
Region, 2000




                       23
Table 17. Northern California Average Per Person Expenditures by Mode and Resident Status

                  Party/Charter      Private/Rental       Shore
                       Non-           Non-          Non-
                Residents        Residents        Residents
                     Residents         Residents        Residents
Trip Expenditures
 Private Transportation      20.45   72.00    13.53    64.24    18.50    66.19
 Food               16.49   22.86     8.96    23.38    13.00    29.27
 Lodging              8.58   45.04     3.66    10.21    9.90    30.41
 Public Transportation       1.83   114.98     0.13    2.97    0.77    36.92
 Boat Fuel                         9.71    11.94
 Party/Charter Fees        56.11   51.62
 Access/Boat Launching       0.84    1.24     1.22    3.02    0.96    0.15
 Equipment Rental          5.13   18.76     0.67    1.37    1.45    4.62
 Bait & Ice             2.60    1.22     6.03    8.33    3.89    6.24
Total Trip Expenditures      112.03   327.72    43.91   125.46    48.47   173.80

Annual Expenditures        All
Rods & Reels            69.66
Other Tackle            49.26
Gear                14.49
Camping Equipment          7.89
Binoculars              1.76
Clothing              13.34
Magazines              2.09
Club Dues              2.08
License Fees            33.96
Boat Accessories         125.52
Boat Purchase           407.72
Boat Maintenance         105.44
Fishing Vehicle          582.53
Fishing Vehicle Maintenance    149.72
Vacation Home           16.53
Vacation Home Maintenance      5.86
Total Annual Expenditures    1,587.85



Source: National Marine Fisheries Service, Marine Angler Expenditures in the Pacific Coast
Region, 2000




                        24
Table 18. Northern California Total Expenditures by Mode and Resident Status ($000s)

                  Party/Charter      Private/Rental        Shore
                       Non-           Non-           Non-
                Residents         Residents         Residents
                      Residents         Residents         Residents
Trip Expenditures
Private Transportation       4,055    2,839    13,044    1,989    16,879    1,455
Food                3,269     902    8,634     724    11,866     644
Lodging              1,701    1,776    3,525     316    9,033     669
Public Transportation        363    4,533     122      92     698     812
Boat Fuel                          9,358     370
Party/Charter Fees        11,126    2,036
Access/Boat Launching        166      49    1,176      93     877      3
Equipment Rental          1,017     740     646      43    1,327     101
Bait & Ice              515      48    5,816     258    3,548     137
Total Trip Expenditures      22,212    12,923    42,321    3,885    44,228    3,821

Annual Expenditures        All
Rods & Reels           27,023
Other Tackle           19,111
Gear                5,621
Camping Equipment         3,059
Binoculars              683
Clothing              5,174
Magazines              811
Club Dues              807
License Fees           13,172
Boat Accessories         50,137
Boat Purchase          162,855
Boat Maintenance         42,116
Fishing Vehicle         232,680
Fishing Vehicle Maintenance    59,801
Vacation Home           6,604
Vacation Home Maintenance     2,339
Total Annual Expenditures     631,993
Total Resident Expenditures    740,758
Total Expenditures        761,385



Source: National Marine Fisheries Service, Marine Angler Expenditures in the Pacific Coast
Region, 2000




                         25
Pacific Socio-Economics Fishing Survey – Northern California, 1998. In 1998,NMFS completed
the Pacific Socio-economics Fishing Survey. This survey had a Northern California component.
The following are highlights from the survey results.

   About 35% of the Northern California anglers surveyed own a boat used for recreational
   saltwater fishing.

   The anglers surveyed on a party/charter or rental boat spent on average $34 per day on boat fees,
   bait, and fishing licenses. Anglers fishing from shore spent on average $9 per day on parking
   fees, bait, and fishing licenses.

   Anglers interviewed on multi-day trips spent an average of 5 nights away from home
   and spent $171 on lodging expenses.

   About 13% of anglers surveyed who were employed gave up some income by taking a
   day of fishing. The average income “missed” was around $436 per trip.

   The anglers surveyed who live in-state have been fishing an average of 20 years.


Figure 3. Recreational Fishing Socioeconomic Survey Results




                         26
Recreational Activities Possibly Requiring Additional Data Collection

   Pleasure Boating

   Personal Watercraft Use

   Kayaking

   Whale and Other Wildlife Watching

   Surfing

   Beach Visitation

   Scuba Diving



COMMERCIAL FISHING IN THE JMPR STUDY AREA

The California Department of Fish and Game (CDFG) collects information on the pounds and ex
vessel value of the commercial catch by species and by 10 by 10 mile block where caught. We
obtained that information for 348 CDFG blocks that run from Point Conception to the Oregon
Boarder. The JMPR Study Area and the three sanctuaries are a subset of these blocks. These are
historical data from 1988 to 2000. The data fields are:

Year
Month
Block Number
Port Landed
Species
Gear
Value
Pounds

The first step was to define each of the Sanctuaries involved in the JMPR in terms of these CDFG
blocks. That is, the CDFG blocks that “best” defines each Sanctuary. 10 by 10 minute resolution
is pretty rough and will most likely understate or overstate what is caught in each sanctuary.
With this in mind, we have historically (Channel Islands) used the centroid method to determine
whether or not a block should be included in the analysis. In other words, if the center of the
block lies within the Sanctuary, it would be included. However, this method is subject to
local/expert judgment. If a block’s center is located outside a Sanctuary boundary, but is
identified as vital to the analysis, it can be included.

We have defined preliminary study areas for each of the three Sanctuaries. It is important to
keep in mind that where two Sanctuaries share a common boundary, a block can be assigned to
only one of the Sanctuaries. In other words, we don’t want to double count a block in the
analysis. Also, blocks cannot be split. It’s either all or none of the block.



                        27
Any primary data collection efforts for the study area will attempt to bring the spatial resolution
down to 1 by 1-mile blocks.

Preliminary analysis is presented for the sum of ex vessel value of all commercial fisheries species
for the period 1991 to 2000. The ArcView map presented below shows the spatial distribution of
the value. The block with the highest historical value is located directly west of Santa Cruz and
just outside MBNMS. The map also identifies several other “hotspots” in terms of value.

Figure 4.


        Commercial Fisheries - All Species - CDFG
         Sum of Ex Vessel Value - 1991 to 2000




                                    Value of Catch
                                       5698 - 94248
                                       94248 - 192249
                                       192249 - 341146
                                       341146 - 657275
                                       657275 - 1045697
                                       1045697 - 1638091
                                       1638091 - 2966310
                                       2966310 - 4490971
                                       4490971 - 8922178
                                       8922178 - 26050441

                                           N


                                        W     E
   80       0       80       160 Miles
                                           S




Analysis presented here is the first step. Additional analysis could include:

Cross Tabulation of Where Fish Caught and Where Fish Landed

For estimating economic impacts on the local economies, we can establish cross tabulations of
catch by study area and by port landed for each species group.

Monthly Data

So far, we have done nothing with the monthly data. It could be useful in looking at the
seasonality of the different fisheries. Production of graphs over the past few years for each
species group could be informative.




                        28
Gear Type

Cross tabulations and maps of gear and species types could be run. This, combined with the
monthly patterns might define certain fishery fleets (squid/wetfish in the Channel Islands NMS
used purse seine gear and the fishermen that fished these species fished them during different
seasons of the year.

MBNMS has historically had the highest total value of commercial fishing in the study area. In
MBNMS in 2000, 33.5 million pounds of fish were caught with a total ex vessel value of $7.1
million dollars. GFNMS in 2000 had 0.5 million pounds of fish caught valued at $1.1 million. 440
thousand pounds of fish were caught in CBNMS in 2000 with an ex vessel value of $0.4 million.
Commercial fishing catch increased dramatically from the early 1990s through the mid 1990s.

Table 19. Commercial Fisheries, All Species, CDFG
Pounds and Ex Vessel Value, 1990 to 2000

JMPR Sanctuaries
          Monterey Bay      Gulf of the Farallones     Cord ell Bank
  Year
        Pou nd s  Value ($)    Pound s   Valu e ($)  Pou nd s   Value ($)
  1990    7,771,627   475,445    182,376    184,574   65,206    98,122
  1991    3,315,382   449,514    338,188    319,370   35,206    34,666
  1992    6,621,627   806,724   1,571,305   1,355,780   368,737    211,516
  1993    12,342,390  2,188,186   1,297,596   1,113,075   327,952    184,211
  1994    25,795,188  6,494,288   2,353,857   2,163,109   597,838    548,659
  1995    12,046,810  7,518,315   1,619,440   1,954,280   136,591    127,945
  1996    21,748,731  7,141,664   1,677,245   2,355,415   129,019    145,111
  1997    42,812,366  9,557,799   1,296,882   1,729,326   181,319    171,776
  1998    19,612,520  5,870,207    891,705   1,581,974   417,874    377,206
  1999    27,693,714  6,400,464    822,971   1,162,465   440,447    368,834
  2000    33,513,661  7,128,238    533,710   1,130,798   138,634    255,133


For the three sanctuaries combined, 1997 was, economically, the most productive year for the
commercial fisheries. 44.3 million pounds of fish were caught with an ex vessel value of $11.4
million. The most recent year for which we have data, 2000, was also a highly productive year,
with 34.2 million pounds caught within the three sanctuaries and 70.3 million pounds caught in
the entire Point Sal to Point Arena study area.

Table 20. Commercial Fisheries, All Species, CDFG
Pounds and Ex Vessel Value, 1990 to 2000

Three Sanctuaries Combined and Entire Study Area




                        29
      Total JMPR Sanctuaries   Point Sal to Point Arena
 Year
       Pou nd s  Value ($)    Pou nd s   Value ($)
 1990    8,019,209   758,141    9,798,425   1,707,832
 1991    3,688,777   803,550    5,813,341   2,824,082
 1992    8,561,668  2,374,020   12,158,685   5,071,224
 1993   13,967,938  3,485,472   19,617,885   6,789,243
 1994   28,746,883  9,206,056   42,231,653  16,895,747
 1995   13,802,842  9,600,540   32,845,328  21,298,184
 1996   23,554,995  9,642,191   37,584,762  17,381,430
 1997   44,290,567  11,458,900   61,719,033  24,085,211
 1998   20,922,099  7,829,388   32,147,973  14,897,034
 1999   28,957,132  7,931,762   56,526,999  16,821,007
 2000   34,186,005  8,514,169   70,274,840  19,186,580


In 2000, the highest ex-vessel value species group in the three-sanctuary area was salmon at over
$2.1 million and just under a million pounds. In 1990, only 31 thousand pounds of salmon was
caught with an ex-vessel value of $85 thousand. In 2000, the next 4 top-ranked species in terms of
ex-vessel value were squid ($1.7 million), rockfishes ($1.2 million), crab ($0.9 million), and flatfish
($0.8 million). In terms of overall significance to the commercial fishery, several of the species
groups have increased from 1990 to 2000, including salmon, rockfishes, anchovy and sardines,
roundfish, and tuna. The economic importance of mackerel has decreased from $93 thousand in
1990 to $25 thousand in 2000. Additionally, wild abalone, once a $45 thousand fishery and
ranked #5 in 1990, has been banned. In 1998, the California Department of Fish and Game
(CDFG) closed the whole commercial industry of wild abalone.

Table 21. Commercial Fisheries, All Species Groups, CDFG
Three JMPR Sanctuaries Combined
Ranked by Value
Pounds and Ex Vessel Value, 1990 and 2000




                         30
                 2000                            1990
Sp ecies Grou p             Pou nd s    Valu e ($)   Sp ecies Grou p       Pou nd s   Valu e ($)
Salm on                   991,194   2,078,047   Squ id            3,766,616   259,735
Squ id                  13,939,345   1,677,840   Crab               61,511   118,117
Rockfishes                 647,124   1,181,384   Mackerel           3,568,344    93,247
Crab                    369,445    901,990   Salm on             31,258    84,917
Flatfish                 1,498,816    831,224   Abalone              9,659    44,944
Anchovy & Sard ines           15,984,661    713,081   Flatfish            111,429    40,268
Praw n                    70,553    618,401   Rockfishes            82,879    35,075
Rou nd fish                 128,367    159,997   Sw ord fish            5,223    20,243
Tu na                    110,073    114,500   Anchovy & Sard ines       249,522    15,931
Scu lp in & Bass               24,667     46,369   Rou nd fish           25,150    14,244
Shrim p                   67,964     44,534   Urchins             59,711    11,862
Sword fish                  12,262     42,915   Other              36,997    11,374
Mackerel                  159,097     25,537   Sharks              4,226     5,306
Sharks                    31,437     20,715   Rays & Skates           5,698     1,540
Urchins                   21,331     16,813   Su rf Perch             395      518
Rays & Skates                70,004     13,708   Sp iny Lobster            79      455
Other                    20,131     12,868   Tu na                463      321
Grenad iers                 30,299      5,554  Octop u s               49      47
Su rf Perch                  2,369      2,800
Smelts & Gru nion               3,957      2,560
Sp iny Lobster                  291     1,852
CA Sheep shead                  260      761
H erring & Roe                1,843       461
Octop u s                    349      158
Sea Cu cu mbers                 138       90
Mu ssels, Snails, Clam s, Oysters         28       14




                                 31
by Carrie Kappel last modified 12-10-2006 17:00
 

Built with Plone